Breadth First Search [BFS]

BFS algorithm works similar to level-order traversal of the tree.

  •   BFS also uses queues. 
  •  Initially, BFS starts at a given vertex, which is at level 0. 
  •  In the first stage, it visits all vertices at level 1. 
  •  In the second stage, it visits all vertices at level 2.

Source code in Java:

import java.util.LinkedList;

import java.util.Iterator;


/**
 *
 * @author Rohan
 */

public class Graph 
{
    private int V;   // No. of vertices
    // Array  of lists for Adjacency List Representation
    private LinkedList<Integer> adj[];
    // Constructor
    Graph(int v)
    {
        V = v;
        adj = new LinkedList[v];
        for (int i=0; i<v; ++i)
            adj[i] = new LinkedList();
    }
    
    //Function to add an edge into the graph
    void addEdge(int v, int w)
    {
        adj[v].add(w);  // Add w to v's list.
    }
    
    // prints BFS traversal from a given source s
    void BFS(int s)
    {
        // Mark all the vertices as not visited(By default
        // set as false)
        boolean visited[] = new boolean[V];
        // Create a queue for BFS
        LinkedList<Integer> queue = new LinkedList<Integer>();
        // Mark the current node as visited and enqueue it
        visited[s]=true;
        queue.add(s);
        while (queue.size() != 0)
        {
            // Dequeue a vertex from queue and print it
            s = queue.poll();
            System.out.print(s+" ");
            // Get all adjacent vertices of the dequeued vertex s
            // If a adjacent has not been visited, then mark it
            // visited and enqueue it
            Iterator<Integer> i = adj[s].listIterator();
            while (i.hasNext())
            {
                int n = i.next();
                if (!visited[n])
                {
                    visited[n] = true;
                    queue.add(n);
                }
            }
        }
    }
    
    public static void main(String args[])
    {
        Graph g = new Graph(4);
        g.addEdge(0, 1);
        g.addEdge(0, 2);
        g.addEdge(1, 2);
        g.addEdge(2, 0);
        g.addEdge(2, 3);
        g.addEdge(3, 3);
        System.out.println("Following is Breadth First Traversal "+
                           "(starting from vertex 2)");
        g.BFS(2);
    }
}

Output:

Following is Breadth-First Traversal (starting from vertex 2)
2 0 3 1

Explanation:












Comments

Popular posts from this blog

How to Build REST API Using PHP

AVL Tree Rotations

Disjoint Set (Union-Find)